#ifndef SISECTIONS_HPP #define SISECTIONS_HPP // // $Id: SIsections.hpp,v 1.28 2009/07/26 17:02:46 rhabarber1848 Exp $ // // classes for SI sections (dbox-II-project) // // Homepage: http://dbox2.elxsi.de // // Copyright (C) 2001 fnbrd (fnbrd@gmx.de) // Copyright (C) 2003 Andreas Oberritter // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // #include #ifdef UPDATE_NETWORKS #include "SInetworks.hpp" #include "SIbouquets.hpp" #endif struct SI_section_SDT_header { unsigned table_id : 8; #if __BYTE_ORDER == __BIG_ENDIAN unsigned section_syntax_indicator : 1; unsigned reserved_future_use : 1; unsigned reserved1 : 2; unsigned section_length_hi : 4; #else unsigned section_length_hi : 4; unsigned reserved1 : 2; unsigned reserved_future_use : 1; unsigned section_syntax_indicator : 1; #endif unsigned section_length_lo : 8; unsigned transport_stream_id_hi : 8; unsigned transport_stream_id_lo : 8; #if __BYTE_ORDER == __BIG_ENDIAN unsigned reserved2 : 2; unsigned version_number : 5; unsigned current_next_indicator : 1; #else unsigned current_next_indicator : 1; unsigned version_number : 5; unsigned reserved2 : 2; #endif unsigned section_number : 8; unsigned last_section_number : 8; unsigned original_network_id_hi : 8; unsigned original_network_id_lo : 8; unsigned reserved_future_use2 : 8; } __attribute__ ((packed)) ; // 11 bytes struct SI_section_NIT_header { unsigned table_id : 8; #if __BYTE_ORDER == __BIG_ENDIAN unsigned section_syntax_indicator : 1; unsigned reserved_future_use : 1; unsigned reserved1 : 2; unsigned section_length_hi : 4; #else unsigned section_length_hi : 4; unsigned reserved1 : 2; unsigned reserved_future_use : 1; unsigned section_syntax_indicator : 1; #endif unsigned section_length_lo : 8; unsigned network_id_hi : 8; unsigned network_id_lo : 8; #if __BYTE_ORDER == __BIG_ENDIAN unsigned reserved2 : 2; unsigned version_number : 5; unsigned current_next_indicator : 1; #else unsigned current_next_indicator : 1; unsigned version_number : 5; unsigned reserved2 : 2; #endif unsigned section_number : 8; unsigned last_section_number : 8; #if __BYTE_ORDER == __BIG_ENDIAN unsigned reserved_future_use2 : 4; unsigned network_descriptors_length_hi : 4; #else unsigned network_descriptors_length_hi : 4; unsigned reserved_future_use2 : 4; #endif unsigned network_descriptors_length_lo : 8; } __attribute__ ((packed)) ; // 10 bytes struct SI_section_BAT_header { unsigned table_id : 8; #if __BYTE_ORDER == __BIG_ENDIAN unsigned section_syntax_indicator : 1; unsigned reserved_future_use : 1; unsigned reserved1 : 2; unsigned section_length_hi : 4; #else unsigned section_length_hi : 4; unsigned reserved1 : 2; unsigned reserved_future_use : 1; unsigned section_syntax_indicator : 1; #endif unsigned section_length_lo : 8; unsigned bouquet_id_hi : 8; unsigned bouquet_id_lo : 8; #if __BYTE_ORDER == __BIG_ENDIAN unsigned reserved2 : 2; unsigned version_number : 5; unsigned current_next_indicator : 1; #else unsigned current_next_indicator : 1; unsigned version_number : 5; unsigned reserved2 : 2; #endif unsigned section_number : 8; unsigned last_section_number : 8; #if __BYTE_ORDER == __BIG_ENDIAN unsigned reserved_future_use2 : 4; unsigned bouquet_descriptors_length_hi : 4; #else unsigned bouquet_descriptors_length_hi : 4; unsigned reserved_future_use2 : 4; #endif unsigned bouquet_descriptors_length_lo : 8; } __attribute__ ((packed)) ; // 10 bytes struct SI_section_EIT_header { unsigned table_id : 8; #if __BYTE_ORDER == __BIG_ENDIAN unsigned section_syntax_indicator : 1; unsigned reserved_future_use : 1; unsigned reserved1 : 2; unsigned section_length_hi : 4; #else unsigned section_length_hi : 4; unsigned reserved1 : 2; unsigned reserved_future_use : 1; unsigned section_syntax_indicator : 1; #endif unsigned section_length_lo : 8; unsigned service_id_hi : 8; unsigned service_id_lo : 8; #if __BYTE_ORDER == __BIG_ENDIAN unsigned reserved2 : 2; unsigned version_number : 5; unsigned current_next_indicator : 1; #else unsigned current_next_indicator : 1; unsigned version_number : 5; unsigned reserved2 : 2; #endif unsigned section_number : 8; unsigned last_section_number : 8; unsigned transport_stream_id_hi : 8; unsigned transport_stream_id_lo : 8; unsigned original_network_id_hi : 8; unsigned original_network_id_lo : 8; unsigned segment_last_section_number : 8; unsigned last_table_id : 8; } __attribute__ ((packed)) ; // 14 bytes // Muss evtl. angepasst werden falls damit RST, TDT und TOT gelesen werden sollen // ^^^ // RST usw. haben section_syntax_indicator == 0, andere == 1 (obi) struct SI_section_header { unsigned table_id : 8; #if __BYTE_ORDER == __BIG_ENDIAN unsigned section_syntax_indicator : 1; unsigned reserved_future_use : 1; unsigned reserved1 : 2; unsigned section_length_hi : 4; #else unsigned section_length_hi : 4; unsigned reserved1 : 2; unsigned reserved_future_use : 1; unsigned section_syntax_indicator : 1; #endif unsigned section_length_lo : 8; unsigned table_id_extension_hi : 8; unsigned table_id_extension_lo : 8; #if __BYTE_ORDER == __BIG_ENDIAN unsigned reserved2 : 2; unsigned version_number : 5; unsigned current_next_indicator : 1; #else unsigned current_next_indicator : 1; unsigned version_number : 5; unsigned reserved2 : 2; #endif unsigned section_number : 8; unsigned last_section_number : 8; } __attribute__ ((packed)) ; // 8 bytes #ifdef ENABLE_PPT struct SI_section_PPT_header { // Premiere Private Table unsigned table_id : 8; #if __BYTE_ORDER == __BIG_ENDIAN unsigned section_syntax_indicator : 1; unsigned reserved_future_use : 1; unsigned reserved1 : 2; unsigned section_length_hi : 4; #else unsigned section_length_hi : 4; unsigned reserved1 : 2; unsigned reserved_future_use : 1; unsigned section_syntax_indicator : 1; #endif unsigned section_length_lo : 8; unsigned table_id_extension_hi : 8; unsigned table_id_extension_lo : 8; #if __BYTE_ORDER == __BIG_ENDIAN unsigned reserved2 : 2; unsigned version_number : 5; unsigned current_next_indicator : 1; #else unsigned current_next_indicator : 1; unsigned version_number : 5; unsigned reserved2 : 2; #endif unsigned section_number : 8; unsigned last_section_number : 8; unsigned content_id_32_25 : 8; unsigned content_id_24_17 : 8; unsigned content_id_16_9 : 8; unsigned content_id_8_0 : 8; unsigned duration_hi : 8; unsigned duration_mid : 8; unsigned duration_lo : 8; unsigned reserved3 : 4; #if __BYTE_ORDER == __BIG_ENDIAN unsigned descriptor_section_length_hi : 4; unsigned descriptor_section_length_lo : 8; #else unsigned descriptor_section_length_lo : 8; unsigned descriptor_section_length_hi : 4; #endif } __attribute__ ((packed)) ; // 8 bytes #endif class SIsection { public: SIsection(void) { buffer = 0; bufferLength = 0;} #if 0 // Kopierte den Puffer in eigenen Puffer SIsection(const char *buf, unsigned bufLength) { buffer = 0; bufferLength = 0; if ((buf) && (bufLength >= sizeof(struct SI_section_header))) { buffer = new char[bufLength]; if (buffer) { bufferLength = bufLength; memmove(buffer, buf, bufLength); } } } #endif // Benutzt den uebergebenen Puffer (sollte mit new char[n] allokiert sein) SIsection(unsigned bufLength, char *buf) { buffer = 0; bufferLength = 0; if ((buf) && (bufLength >= sizeof(struct SI_section_header))) { buffer = buf; bufferLength = bufLength; } } #if 0 // Konstruktor um eine (leere) SIsection mit den fuer Vergleiche // noetigen Inhalte (s. key) zu erstellen SIsection(const struct SI_section_header *header) { bufferLength = 0; buffer = new char[sizeof(struct SI_section_header)]; if (buffer) { memmove(buffer, header, sizeof(struct SI_section_header)); bufferLength = sizeof(struct SI_section_header); } } // Std-Copy SIsection(const SIsection &s) { buffer = 0; bufferLength = 0; if (s.buffer) { buffer = new char[s.bufferLength]; if (buffer) { bufferLength = s.bufferLength; memmove(buffer, s.buffer, bufferLength); } } } #endif // Destruktor virtual ~SIsection(void) { bufferLength = 0; } unsigned char tableID(void) const { return buffer ? ((struct SI_section_header *)buffer)->table_id : (unsigned char) -1; } unsigned short tableIDextension(void) const { return buffer ? ((((struct SI_section_header *)buffer)->table_id_extension_hi << 8) | ((struct SI_section_header *)buffer)->table_id_extension_lo) : (unsigned short) -1; } unsigned char sectionNumber(void) const { return buffer ? ((struct SI_section_header *)buffer)->section_number : (unsigned char) -1; } unsigned char versionNumber(void) const { return buffer ? ((struct SI_section_header *)buffer)->version_number : (unsigned char) -1; } unsigned char currentNextIndicator(void) const { return buffer ? ((struct SI_section_header *)buffer)->current_next_indicator : (unsigned char) -1; } unsigned char lastSectionNumber(void) const { return buffer ? ((struct SI_section_header *)buffer)->last_section_number : (unsigned char) -1; } struct SI_section_header const *header(void) const { return (struct SI_section_header *)buffer; } static uint64_t key(const struct SI_section_header *header) { // Der eindeutige Key einer SIsection besteht aus 1 Byte Table-ID, // 2 Byte Table-ID-extension, 1 Byte Section number // 1 Byte Version number und 1 Byte current_next_indicator if (!header) return (uint64_t) -1; return (((uint64_t)header->table_id) << 40) + (((uint64_t)header->table_id_extension_hi) << 32) + (((uint64_t)header->table_id_extension_lo) << 24) + (((uint64_t)header->section_number) << 16) + (((uint64_t)header->version_number) << 8) + (((uint64_t)header->current_next_indicator)); } uint64_t key(void) const { return buffer ? key(header()) : (uint64_t) -1; } // Der Operator zum sortieren bool operator < (const SIsection& s) const { return key() < s.key(); } static void dumpSmallSectionHeader(const struct SI_section_header *header) { if (!header) return; printf("\ntable_id: 0x%02x ", header->table_id); printf("table_id_extension: 0x%02x%02x", header->table_id_extension_hi, header->table_id_extension_lo); printf("section_number: 0x%02x\n", header->section_number); } static void dumpSmallSectionHeader(const SIsection &s) { dumpSmallSectionHeader((struct SI_section_header *)s.buffer); } void dumpSmallSectionHeader(void) const { dumpSmallSectionHeader((struct SI_section_header *)buffer); } int saveBufferToFile(FILE *file) const { if (!file) return 1; return (fwrite(buffer, bufferLength, 1, file) != 1); } int saveBufferToFile(const char *filename) const { if (!filename) return 2; FILE *file = fopen(filename, "wb"); if (file) { int rc = saveBufferToFile(file); fclose(file); return rc; } return 2; } static void dump1(const struct SI_section_header *header) { if (!header) return; printf("\ntable_id: 0x%02x\n", header->table_id); printf("section_syntax_indicator: 0x%02x\n", header->section_syntax_indicator); printf("section_length: %hu\n", (header->section_length_hi << 8) | header->section_length_lo); } static void dump2(const struct SI_section_header *header) { if (!header) return; printf("version_number: 0x%02x\n", header->version_number); printf("current_next_indicator: 0x%02x\n", header->current_next_indicator); printf("section_number: 0x%02x\n", header->section_number); printf("last_section_number: 0x%02x\n", header->last_section_number); } static void dump(const struct SI_section_header *header) { if (!header) return; dump1(header); printf("table_id_extension: 0x%02x%02x\n", header->table_id_extension_hi, header->table_id_extension_lo); dump2(header); } static void dump(const SIsection &s) { dump((struct SI_section_header *)s.buffer); } void dump(void) const { dump((struct SI_section_header *)buffer); } protected: char *buffer; unsigned bufferLength; }; // Fuer for_each struct printSIsection : public std::unary_function { void operator() (const SIsection &s) { s.dump();} }; // Fuer for_each struct printSmallSIsectionHeader : public std::unary_function { void operator() (const SIsection &s) { s.dumpSmallSectionHeader();} }; class SIsections : public std::set > { public: // Liefert 0 falls kein Fehler // Algo: // (1) Segment lesen (wird zum ersten Segment deklariert) // (2) Falls Segmentnummer = letze Segmentnummer = 0 dann fertig, sonst // (3) alle Segment lesen bis erstes wieder kommt // (4) fehlende Segmente (s. last_section_number) versuchen zu lesen // Der Timeout gilt fuer jeden der 3 Abschnitte, d.h. maximal dauert // es 3 x timeout. // Mit readNext=0 werden nur aktuelle Sections gelesen (current_next_indicator = 1) int readSections(unsigned short pid, unsigned char filter, unsigned char mask, int readNext=0, unsigned timeoutInSeconds=10); }; class SIsectionEIT : public SIsection { public: SIsectionEIT(const SIsection &s) : SIsection(s) { parsed = 0; parse(); } // Std-Copy SIsectionEIT(const SIsectionEIT &s) : SIsection(s) { evts = s.evts; parsed = s.parsed; } // Benutzt den uebergebenen Puffer (sollte mit new char[n] allokiert sein) SIsectionEIT(unsigned bufLength, char *buf) : SIsection(bufLength, buf) { parsed = 0; parse(); } t_service_id service_id(void) const { return buffer ? ((((struct SI_section_EIT_header *)buffer)->service_id_hi << 8) | ((struct SI_section_EIT_header *)buffer)->service_id_lo): 0; } t_original_network_id original_network_id(void) const { return buffer ? ((((struct SI_section_EIT_header *)buffer)->original_network_id_hi << 8) | ((struct SI_section_EIT_header *)buffer)->original_network_id_lo) : 0; } t_transport_stream_id transport_stream_id(void) const { return buffer ? ((((struct SI_section_EIT_header *)buffer)->transport_stream_id_hi << 8) | ((struct SI_section_EIT_header *)buffer)->transport_stream_id_lo) : 0; } struct SI_section_EIT_header const *header(void) const { return (struct SI_section_EIT_header *)buffer; } static void dump(const struct SI_section_EIT_header *header) { if (!header) return; SIsection::dump1((const struct SI_section_header *)header); printf("service_id: 0x%02x%02x\n", header->service_id_hi, header->service_id_lo); SIsection::dump2((const struct SI_section_header *)header); printf("transport_stream_id 0x%02x%02x\n", header->transport_stream_id_hi, header->transport_stream_id_lo); printf("original_network_id 0x%02x%02x\n", header->original_network_id_hi, header->original_network_id_lo); printf("segment_last_section_number: 0x%02x\n", header->segment_last_section_number); printf("last_table_id 0x%02x\n", header->last_table_id); } static void dump(const SIsectionEIT &s) { dump((struct SI_section_EIT_header *)s.buffer); for_each(s.evts.begin(), s.evts.end(), printSIevent()); } void dump(void) const { dump((struct SI_section_EIT_header *)buffer); for_each(evts.begin(), evts.end(), printSIevent()); } const SIevents &events(void) const { //if(!parsed) // parse(); -> nicht const return evts; } int is_parsed(void) const { return parsed; } protected: SIevents evts; int parsed; void parse(void); void parseDescriptors(const char *desc, unsigned len, SIevent &e); void parseShortEventDescriptor(const char *buf, SIevent &e, unsigned maxlen); void parseExtendedEventDescriptor(const char *buf, SIevent &e, unsigned maxlen); void parseContentDescriptor(const char *buf, SIevent &e, unsigned maxlen); void parseComponentDescriptor(const char *buf, SIevent &e, unsigned maxlen); void parseParentalRatingDescriptor(const char *buf, SIevent &e, unsigned maxlen); void parseLinkageDescriptor(const char *buf, SIevent &e, unsigned maxlen); void parsePDCDescriptor(const char *buf, SIevent &e, unsigned maxlen); #ifdef ENABLE_FREESATEPG std::string freesatHuffmanDecode(std::string input); #endif }; #ifdef ENABLE_PPT class SIsectionPPT : public SIsection { public: SIsectionPPT(const SIsection &s) : SIsection(s) { parsed = 0; parse(); } // Std-Copy SIsectionPPT(const SIsectionPPT &s) : SIsection(s) { evts = s.evts; parsed = s.parsed; } // Benutzt den uebergebenen Puffer (sollte mit new char[n] allokiert sein) SIsectionPPT(unsigned bufLength, char *buf) : SIsection(bufLength, buf) { parsed = 0; parse(); } long content_id(void) const { return buffer ? ((((struct SI_section_PPT_header *)buffer)->content_id_32_25<< 24) | (((struct SI_section_PPT_header *)buffer)->content_id_24_17<< 16) | (((struct SI_section_PPT_header *)buffer)->content_id_16_9<< 8) | ((struct SI_section_PPT_header *)buffer)->content_id_8_0): 0; } long duration(void) const { if (!buffer) return(0); if (!((((struct SI_section_PPT_header *)buffer)->duration_hi == 0xff) && (((struct SI_section_PPT_header *)buffer)->duration_mid == 0xff) && (((struct SI_section_PPT_header *)buffer)->duration_lo == 0xff))) return ((((struct SI_section_PPT_header *)buffer)->duration_hi)>>4)*10*3600L + ((((struct SI_section_PPT_header *)buffer)->duration_hi)&0x0f)*3600L + ((((struct SI_section_PPT_header *)buffer)->duration_mid)>>4)*10*60L + ((((struct SI_section_PPT_header *)buffer)->duration_mid)&0x0f)*60L + ((((struct SI_section_PPT_header *)buffer)->duration_lo)>>4)*10 + ((((struct SI_section_PPT_header *)buffer)->duration_lo)&0x0f); return(0); } short int descriptor_section_length(void) const { return buffer ? ((((struct SI_section_PPT_header *)buffer)->descriptor_section_length_hi << 8) | ((struct SI_section_PPT_header *)buffer)->descriptor_section_length_lo) : 0; } struct SI_section_PPT_header const *header(void) const { return (struct SI_section_PPT_header *)buffer; } static void dump(const struct SI_section_PPT_header *header) { if (!header) return; SIsection::dump1((const struct SI_section_header *)header); printf("table_id_extension: 0x%02x%02x\n", header->table_id_extension_hi, header->table_id_extension_lo); SIsection::dump1((const struct SI_section_header *)header); printf("content id 0x%02x%02x%02x%02x\n", header->content_id_32_25, header->content_id_24_17, header->content_id_16_9, header->content_id_8_0); printf("duration 0x%02x%02x%02x\n", header->duration_hi, header->duration_mid, header->duration_lo); printf("reserved3 0x%02x\n", header->reserved3); printf("descriptor section length 0x%02x%02x\n", header->descriptor_section_length_hi, header->descriptor_section_length_lo); } static void dump(const SIsectionPPT &s) { dump((struct SI_section_PPT_header *)s.buffer); for_each(s.evts.begin(), s.evts.end(), printSIevent()); } void dump(void) const { dump((struct SI_section_PPT_header *)buffer); for_each(evts.begin(), evts.end(), printSIevent()); } const SIevents &events(void) const { //if(!parsed) // parse(); -> nicht const return evts; } int is_parsed(void) const { return parsed; } protected: SIevents evts; int parsed; void parse(void); void parseDescriptors(const char *desc, unsigned len, SIevent &e); void parseShortEventDescriptor(const char *buf, SIevent &e, unsigned maxlen); void parseExtendedEventDescriptor(const char *buf, SIevent &e, unsigned maxlen); void parseContentDescriptor(const char *buf, SIevent &e, unsigned maxlen); void parseComponentDescriptor(const char *buf, SIevent &e, unsigned maxlen); void parseParentalRatingDescriptor(const char *buf, SIevent &e, unsigned maxlen); void parseLinkageDescriptor(const char *buf, SIevent &e, unsigned maxlen); void parsePrivateContentOrderDescriptor(const char *buf, SIevent &e, unsigned maxlen); void parsePrivateParentalInformationDescriptor(const char *buf, SIevent &e, unsigned maxlen); void parsePrivateContentTransmissionDescriptor(const char *buf, SIevent &e, unsigned maxlen); }; #endif #ifndef DO_NOT_INCLUDE_STUFF_NOT_NEEDED_FOR_SECTIONSD // Fuer for_each struct printSIsectionEIT : public std::unary_function { void operator() (const SIsectionEIT &s) { s.dump();} }; #ifdef ENABLE_PPT // Fuer for_each struct printSIsectionPPT : public std::unary_function { void operator() (const SIsectionPPT &s) { s.dump();} }; #endif /* // Fuer for_each struct parseSIsectionEIT : public std::unary_function { void operator() (const SIsectionEIT &s) { s.parse();} }; */ // Menge aller present/following EITs (actual TS) class SIsectionsEIT : public std::set > { public: int readSections(void) { SIsections sections; int rc=sections.readSections(0x12, 0x4e, 0xff); for (SIsections::iterator k=sections.begin(); k!=sections.end(); k++) insert(*k); return rc; } }; #ifdef ENABLE_PPT // Menge aller present/following PPTs (actual TS) class SIsectionsPPT : public std::set > { public: int readSections(int pid) { // int readSections(void) { SIsections sections; int rc=sections.readSections(pid, 0xa1, 0xfe); for (SIsections::iterator k=sections.begin(); k!=sections.end(); k++) insert(*k); return rc; } }; #endif // Menge aller schedule EITs (actual TS) class SIsectionsEITschedule : public std::set > { public: int readSections(void) { SIsections sections; int rc=sections.readSections(0x12, 0x50, 0xf0); for (SIsections::iterator k=sections.begin(); k!=sections.end(); k++) insert(*k); return rc; } }; #endif class SIsectionSDT : public SIsection { public: SIsectionSDT(const SIsection &s) : SIsection(s) { parsed = 0; parse(); } // Std-Copy SIsectionSDT(const SIsectionSDT &s) : SIsection(s) { svs = s.svs; parsed = s.parsed; } // Benutzt den uebergebenen Puffer (sollte mit new char[n] allokiert sein) SIsectionSDT(unsigned bufLength, char *buf) : SIsection(bufLength, buf) { parsed = 0; parse(); } t_transport_stream_id transport_stream_id(void) const { return buffer ? ((((struct SI_section_SDT_header *)buffer)->transport_stream_id_hi << 8) | ((struct SI_section_SDT_header *)buffer)->transport_stream_id_lo) : 0; } struct SI_section_SDT_header const *header(void) const { return (struct SI_section_SDT_header *)buffer; } t_original_network_id original_network_id(void) const { return buffer ? ((((struct SI_section_SDT_header *)buffer)->original_network_id_hi << 8) | ((struct SI_section_SDT_header *)buffer)->original_network_id_lo) : 0; } static void dump(const struct SI_section_SDT_header *header) { if (!header) return; SIsection::dump1((const struct SI_section_header *)header); printf("transport_stream_id: 0x%02x%02x\n", header->transport_stream_id_hi, header->transport_stream_id_lo); SIsection::dump2((const struct SI_section_header *)header); printf("original_network_id: 0x%02x%02x\n", header->original_network_id_hi, header->original_network_id_lo); } static void dump(const SIsectionSDT &s) { dump((struct SI_section_SDT_header *)s.buffer); for_each(s.svs.begin(), s.svs.end(), printSIservice()); } void dump(void) const { dump((struct SI_section_SDT_header *)buffer); for_each(svs.begin(), svs.end(), printSIservice()); } const SIservices &services(void) const { //if(!parsed) // parse(); -> nicht const return svs; } private: SIservices svs; int parsed; void parse(void); void parseDescriptors(const char *desc, unsigned len, SIservice &s); void parseServiceDescriptor(const char *buf, SIservice &s); void parsePrivateDataDescriptor(const char *buf, SIservice &s); void parseNVODreferenceDescriptor(const char *buf, SIservice &s); }; #ifdef UPDATE_NETWORKS class SIsectionBAT : public SIsection { public: SIsectionBAT(const SIsection &s) : SIsection(s) { parsed = 0; parse(); } // Std-Copy SIsectionBAT(const SIsectionBAT &s) : SIsection(s) { bsv = s.bsv; parsed = s.parsed; } // Benutzt den uebergebenen Puffer (sollte mit new char[n] allokiert sein) SIsectionBAT(unsigned bufLength, char *buf) : SIsection(bufLength, buf) { parsed = 0; parse(); } unsigned short bouquetID(void) const { return buffer ? ((((struct SI_section_BAT_header *)buffer)->bouquet_id_hi << 8) | ((struct SI_section_BAT_header *)buffer)->bouquet_id_lo) : (unsigned short) -1; } struct SI_section_BAT_header const *header(void) const { return (struct SI_section_BAT_header *)buffer; } static void dump(const struct SI_section_BAT_header *header) { if (!header) return; SIsection::dump1((const struct SI_section_header *)header); printf("bouquet_id: 0x%02x%02x\n", header->bouquet_id_hi, header->bouquet_id_lo); SIsection::dump2((const struct SI_section_header *)header); printf("bouquet_descriptors_length %hu\n", (header->bouquet_descriptors_length_hi << 8) | header->bouquet_descriptors_length_lo); } static void dump(const SIsectionBAT &s) { dump((struct SI_section_BAT_header *)s.buffer); } void dump(void) const { dump((struct SI_section_BAT_header *)buffer); } const SIbouquets &bouquets(void) const { //if(!parsed) // parse(); -> nicht const return bsv; } protected: SIbouquets bsv; int parsed; void parse(void); // int parseDescriptors(const char *desc, unsigned len, SIbouquet &s, int section_no, int count, const char *bouquetName); // void parseBouquetNameDescriptor(const char *buf, SIbouquet &s); // int parseServiceListDescriptor(const char *buf, SIbouquet &s, int section_no, int count); }; class SIsectionNIT : public SIsection { public: SIsectionNIT(const SIsection &s) : SIsection(s) { parsed = 0; parse(); } // Std-Copy SIsectionNIT(const SIsectionNIT &s) : SIsection(s) { ntw = s.ntw; parsed = s.parsed; } // Benutzt den uebergebenen Puffer (sollte mit new char[n] allokiert sein) SIsectionNIT(unsigned bufLength, char *buf) : SIsection(bufLength, buf) { parsed = 0; parse(); } unsigned short networkID(void) const { return buffer ? ((((struct SI_section_NIT_header *)buffer)->network_id_hi << 8) | ((struct SI_section_NIT_header *)buffer)->network_id_lo) : (unsigned short) -1; } struct SI_section_NIT_header const *header(void) const { return (struct SI_section_NIT_header *)buffer; } static void dump(const struct SI_section_NIT_header *header) { if (!header) return; SIsection::dump1((const struct SI_section_header *)header); printf("network_id: 0x%02x%02x\n", header->network_id_hi, header->network_id_lo); SIsection::dump2((const struct SI_section_header *)header); printf("network_descriptors_length %hu\n", (header->network_descriptors_length_hi << 8) | header->network_descriptors_length_lo); } static void dump(const SIsectionNIT &s) { dump((struct SI_section_NIT_header *)s.buffer); } void dump(void) const { dump((struct SI_section_NIT_header *)buffer); } const SInetworks &networks(void) const { //if(!parsed) // parse(); -> nicht const return ntw; } protected: SInetworks ntw; int parsed; void parse(void); void parseDescriptors(const char *desc, unsigned len, SInetwork &s); void copyDeliveryDescriptor(const char *buf, SInetwork &s); }; #endif #ifndef DO_NOT_INCLUDE_STUFF_NOT_NEEDED_FOR_SECTIONSD // Fuer for_each struct printSIsectionSDT : public std::unary_function { void operator() (const SIsectionSDT &s) { s.dump();} }; // Menge aller SDTs (actual TS) class SIsectionsSDT : public std::set > { public: int readSections(void) { SIsections sections; int rc=sections.readSections(0x11, 0x42, 0xff); for (SIsections::iterator k=sections.begin(); k!=sections.end(); k++) insert(*k); return rc; } }; // Fuer for_each struct printSIsectionBAT : public std::unary_function { void operator() (const SIsectionBAT &s) { s.dump();} }; // Menge aller BATs class SIsectionsBAT : public std::set > { public: int readSections(void) { SIsections sections; int rc=sections.readSections(0x11, 0x4a, 0xff); for (SIsections::iterator k=sections.begin(); k!=sections.end(); k++) insert(*k); return rc; } }; // Fuer for_each struct printSIsectionNIT : public std::unary_function { void operator() (const SIsectionNIT &s) { s.dump();} }; // Menge aller NITs (actual network) class SIsectionsNIT : public std::set > { public: int readSections(void) { SIsections sections; int rc=sections.readSections(0x10, 0x40, 0xff); for (SIsections::iterator k=sections.begin(); k!=sections.end(); k++) insert(*k); return rc; } }; #endif #endif // SISECTIONS_HPP