our current experimental Neutrino branch

git-svn-id: file:///home/bas/coolstream_public_svn/THIRDPARTY/applications/neutrino-experimental@27 e54a6e83-5905-42d5-8d5c-058d10e6a962


Origin commit data
------------------
Branch: ni/coolstream
Commit: bc5bd4154e
Author: mrcolor <mrcolor@e54a6e83-5905-42d5-8d5c-058d10e6a962>
Date: 2009-12-08 (Tue, 08 Dec 2009)



------------------
This commit was generated by Migit
This commit is contained in:
mrcolor
2009-12-08 11:05:11 +00:00
commit bcecfb6585
876 changed files with 193775 additions and 0 deletions

287
lib/libdvbsub/osd.cpp Normal file
View File

@@ -0,0 +1,287 @@
/*
* osd.c: Abstract On Screen Display layer
*
* See the main source file 'vdr.c' for copyright information and
* how to reach the author.
*
* $Id: osd.cpp,v 1.1 2009/02/23 19:46:44 rhabarber1848 Exp $
*/
#include "dvbsubtitle.h"
//#include "device.h"
#define PAGE_COMPOSITION_SEGMENT 0x10
#define REGION_COMPOSITION_SEGMENT 0x11
#define CLUT_DEFINITION_SEGMENT 0x12
#define OBJECT_DATA_SEGMENT 0x13
#define END_OF_DISPLAY_SET_SEGMENT 0x80
// --- cPalette --------------------------------------------------------------
cPalette::cPalette(int Bpp)
{
SetBpp(Bpp);
SetAntiAliasGranularity(10, 10);
}
void cPalette::SetAntiAliasGranularity(uint FixedColors, uint BlendColors)
{
if (FixedColors >= MAXNUMCOLORS || BlendColors == 0)
antiAliasGranularity = MAXNUMCOLORS - 1;
else {
int ColorsForBlending = MAXNUMCOLORS - FixedColors;
int ColorsPerBlend = ColorsForBlending / BlendColors + 2; // +2 = the full foreground and background colors, which are amoung the fixed colors
antiAliasGranularity = double(MAXNUMCOLORS - 1) / (ColorsPerBlend - 1);
}
}
void cPalette::Reset(void)
{
numColors = 0;
modified = false;
}
int cPalette::Index(tColor Color)
{
// Check if color is already defined:
for (int i = 0; i < numColors; i++) {
if (color[i] == Color)
return i;
}
// No exact color, try a close one:
int i = ClosestColor(Color, 4);
if (i >= 0)
return i;
// No close one, try to define a new one:
if (numColors < maxColors) {
color[numColors++] = Color;
modified = true;
return numColors - 1;
}
// Out of colors, so any close color must do:
return ClosestColor(Color);
}
void cPalette::SetBpp(int Bpp)
{
bpp = Bpp;
maxColors = 1 << bpp;
Reset();
}
void cPalette::SetColor(int Index, tColor Color)
{
if (Index < maxColors) {
if (numColors <= Index) {
numColors = Index + 1;
modified = true;
}
else
modified |= color[Index] != Color;
color[Index] = Color;
}
}
const tColor *cPalette::Colors(int &NumColors) const
{
NumColors = numColors;
return numColors ? color : NULL;
}
void cPalette::Take(const cPalette &Palette, tIndexes *Indexes, tColor ColorFg, tColor ColorBg)
{
for (int i = 0; i < Palette.numColors; i++) {
tColor Color = Palette.color[i];
if (ColorFg || ColorBg) {
switch (i) {
case 0: Color = ColorBg; break;
case 1: Color = ColorFg; break;
}
}
int n = Index(Color);
if (Indexes)
(*Indexes)[i] = n;
}
}
void cPalette::Replace(const cPalette &Palette)
{
for (int i = 0; i < Palette.numColors; i++)
SetColor(i, Palette.color[i]);
numColors = Palette.numColors;
antiAliasGranularity = Palette.antiAliasGranularity;
}
tColor cPalette::Blend(tColor ColorFg, tColor ColorBg, uint8_t Level) const
{
if (antiAliasGranularity > 0)
Level = uint8_t(int(Level / antiAliasGranularity + 0.5) * antiAliasGranularity);
int Af = (ColorFg & 0xFF000000) >> 24;
int Rf = (ColorFg & 0x00FF0000) >> 16;
int Gf = (ColorFg & 0x0000FF00) >> 8;
int Bf = (ColorFg & 0x000000FF);
int Ab = (ColorBg & 0xFF000000) >> 24;
int Rb = (ColorBg & 0x00FF0000) >> 16;
int Gb = (ColorBg & 0x0000FF00) >> 8;
int Bb = (ColorBg & 0x000000FF);
int A = (Ab + (Af - Ab) * Level / 0xFF) & 0xFF;
int R = (Rb + (Rf - Rb) * Level / 0xFF) & 0xFF;
int G = (Gb + (Gf - Gb) * Level / 0xFF) & 0xFF;
int B = (Bb + (Bf - Bb) * Level / 0xFF) & 0xFF;
return (A << 24) | (R << 16) | (G << 8) | B;
}
int cPalette::ClosestColor(tColor Color, int MaxDiff) const
{
int n = 0;
int d = INT_MAX;
int A1 = (Color & 0xFF000000) >> 24;
int R1 = (Color & 0x00FF0000) >> 16;
int G1 = (Color & 0x0000FF00) >> 8;
int B1 = (Color & 0x000000FF);
for (int i = 0; i < numColors; i++) {
int A2 = (color[i] & 0xFF000000) >> 24;
int R2 = (color[i] & 0x00FF0000) >> 16;
int G2 = (color[i] & 0x0000FF00) >> 8;
int B2 = (color[i] & 0x000000FF);
int diff = (abs(A1 - A2) << 1) + (abs(R1 - R2) << 1) + (abs(G1 - G2) << 1) + (abs(B1 - B2) << 1);
if (diff < d) {
d = diff;
n = i;
}
}
return d <= MaxDiff ? n : -1;
}
cBitmap::cBitmap(int Width, int Height, int Bpp, int X0, int Y0)
:cPalette(Bpp)
{
bitmap = NULL;
x0 = X0;
y0 = Y0;
SetSize(Width, Height);
}
cBitmap::~cBitmap()
{
free(bitmap);
}
void cBitmap::SetIndex(int x, int y, tIndex Index)
{
if (bitmap) {
if (0 <= x && x < width && 0 <= y && y < height) {
if (bitmap[width * y + x] != Index) {
bitmap[width * y + x] = Index;
if (dirtyX1 > x) dirtyX1 = x;
if (dirtyY1 > y) dirtyY1 = y;
if (dirtyX2 < x) dirtyX2 = x;
if (dirtyY2 < y) dirtyY2 = y;
}
}
}
}
void cBitmap::SetSize(int Width, int Height)
{
if (bitmap && Width == width && Height == height)
return;
width = Width;
height = Height;
free(bitmap);
bitmap = NULL;
dirtyX1 = 0;
dirtyY1 = 0;
dirtyX2 = width - 1;
dirtyY2 = height - 1;
if (width > 0 && height > 0) {
bitmap = MALLOC(tIndex, width * height);
if (bitmap)
memset(bitmap, 0x00, width * height);
else
esyslog("ERROR: can't allocate bitmap!");
}
else
esyslog("ERROR: invalid bitmap parameters (%d, %d)!", width, height);
}
void cBitmap::DrawBitmap(int x, int y, const cBitmap &Bitmap, tColor ColorFg, tColor ColorBg, bool ReplacePalette, bool Overlay)
{
if (bitmap && Bitmap.bitmap && Intersects(x, y, x + Bitmap.Width() - 1, y + Bitmap.Height() - 1)) {
if (Covers(x, y, x + Bitmap.Width() - 1, y + Bitmap.Height() - 1))
Reset();
x -= x0;
y -= y0;
if (ReplacePalette && Covers(x + x0, y + y0, x + x0 + Bitmap.Width() - 1, y + y0 + Bitmap.Height() - 1)) {
Replace(Bitmap);
for (int ix = 0; ix < Bitmap.width; ix++) {
for (int iy = 0; iy < Bitmap.height; iy++) {
if (!Overlay || Bitmap.bitmap[Bitmap.width * iy + ix] != 0)
SetIndex(x + ix, y + iy, Bitmap.bitmap[Bitmap.width * iy + ix]);
}
}
}
else {
tIndexes Indexes;
Take(Bitmap, &Indexes, ColorFg, ColorBg);
for (int ix = 0; ix < Bitmap.width; ix++) {
for (int iy = 0; iy < Bitmap.height; iy++) {
if (!Overlay || Bitmap.bitmap[Bitmap.width * iy + ix] != 0)
SetIndex(x + ix, y + iy, Indexes[int(Bitmap.bitmap[Bitmap.width * iy + ix])]);
}
}
}
}
}
bool cBitmap::Contains(int x, int y) const
{
x -= x0;
y -= y0;
return 0 <= x && x < width && 0 <= y && y < height;
}
bool cBitmap::Covers(int x1, int y1, int x2, int y2) const
{
x1 -= x0;
y1 -= y0;
x2 -= x0;
y2 -= y0;
return x1 <= 0 && y1 <= 0 && x2 >= width - 1 && y2 >= height - 1;
}
bool cBitmap::Intersects(int x1, int y1, int x2, int y2) const
{
x1 -= x0;
y1 -= y0;
x2 -= x0;
y2 -= y0;
return !(x2 < 0 || x1 >= width || y2 < 0 || y1 >= height);
}
bool cBitmap::Dirty(int &x1, int &y1, int &x2, int &y2)
{
if (dirtyX2 >= 0) {
x1 = dirtyX1;
y1 = dirtyY1;
x2 = dirtyX2;
y2 = dirtyY2;
return true;
}
return false;
}
void cBitmap::Clean(void)
{
dirtyX1 = width;
dirtyY1 = height;
dirtyX2 = -1;
dirtyY2 = -1;
}
const tIndex *cBitmap::Data(int x, int y)
{
return &bitmap[y * width + x];
}