mirror of
https://github.com/tuxbox-fork-migrations/recycled-ni-neutrino.git
synced 2025-09-02 02:11:04 +02:00
our current experimental Neutrino branch
git-svn-id: file:///home/bas/coolstream_public_svn/THIRDPARTY/applications/neutrino-experimental@27 e54a6e83-5905-42d5-8d5c-058d10e6a962
Origin commit data
------------------
Branch: ni/coolstream
Commit: bc5bd4154e
Author: mrcolor <mrcolor@e54a6e83-5905-42d5-8d5c-058d10e6a962>
Date: 2009-12-08 (Tue, 08 Dec 2009)
------------------
This commit was generated by Migit
This commit is contained in:
274
src/driver/audiodec/fft.c
Normal file
274
src/driver/audiodec/fft.c
Normal file
@@ -0,0 +1,274 @@
|
||||
/* fft.c: Iterative implementation of a FFT
|
||||
* Copyright (C) 1999 Richard Boulton <richard@tartarus.org>
|
||||
* Convolution stuff by Ralph Loader <suckfish@ihug.co.nz>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
*/
|
||||
|
||||
/*
|
||||
* TODO
|
||||
* Remove compiling in of FFT_BUFFER_SIZE? (Might slow things down, but would
|
||||
* be nice to be able to change size at runtime.)
|
||||
* Finish making / checking thread-safety.
|
||||
* More optimisations.
|
||||
*/
|
||||
|
||||
#include "fft.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
#ifndef PI
|
||||
#ifdef M_PI
|
||||
#define PI M_PI
|
||||
#else
|
||||
#define PI 3.14159265358979323846 /* pi */
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* ########### */
|
||||
/* # Structs # */
|
||||
/* ########### */
|
||||
|
||||
struct _struct_fft_state {
|
||||
/* Temporary data stores to perform FFT in. */
|
||||
float real[FFT_BUFFER_SIZE];
|
||||
float imag[FFT_BUFFER_SIZE];
|
||||
};
|
||||
|
||||
/* ############################# */
|
||||
/* # Local function prototypes # */
|
||||
/* ############################# */
|
||||
|
||||
static void fft_prepare(const sound_sample *input, float * re, float * im);
|
||||
static void fft_calculate(float * re, float * im);
|
||||
static void fft_output(const float *re, const float *im, float *output);
|
||||
static int reverseBits(unsigned int initial);
|
||||
|
||||
/* #################### */
|
||||
/* # Global variables # */
|
||||
/* #################### */
|
||||
|
||||
/* Table to speed up bit reverse copy */
|
||||
static unsigned int bitReverse[FFT_BUFFER_SIZE];
|
||||
|
||||
/* The next two tables could be made to use less space in memory, since they
|
||||
* overlap hugely, but hey. */
|
||||
static float sintable[FFT_BUFFER_SIZE / 2];
|
||||
static float costable[FFT_BUFFER_SIZE / 2];
|
||||
|
||||
/* ############################## */
|
||||
/* # Externally called routines # */
|
||||
/* ############################## */
|
||||
|
||||
/* --------- */
|
||||
/* FFT stuff */
|
||||
/* --------- */
|
||||
|
||||
/*
|
||||
* Initialisation routine - sets up tables and space to work in.
|
||||
* Returns a pointer to internal state, to be used when performing calls.
|
||||
* On error, returns NULL.
|
||||
* The pointer should be freed when it is finished with, by fft_close().
|
||||
*/
|
||||
fft_state *fft_init(void) {
|
||||
fft_state *state;
|
||||
unsigned int i;
|
||||
|
||||
state = (fft_state *) malloc (sizeof(fft_state));
|
||||
if(!state) return NULL;
|
||||
|
||||
for(i = 0; i < FFT_BUFFER_SIZE; i++) {
|
||||
bitReverse[i] = reverseBits(i);
|
||||
}
|
||||
for(i = 0; i < FFT_BUFFER_SIZE / 2; i++) {
|
||||
float j = 2 * PI * i / FFT_BUFFER_SIZE;
|
||||
costable[i] = cos(j);
|
||||
sintable[i] = sin(j);
|
||||
}
|
||||
|
||||
return state;
|
||||
}
|
||||
|
||||
/*
|
||||
* Do all the steps of the FFT, taking as input sound data (as described in
|
||||
* sound.h) and returning the intensities of each frequency as floats in the
|
||||
* range 0 to ((FFT_BUFFER_SIZE / 2) * 32768) ^ 2
|
||||
*
|
||||
* FIXME - the above range assumes no frequencies present have an amplitude
|
||||
* larger than that of the sample variation. But this is false: we could have
|
||||
* a wave such that its maximums are always between samples, and it's just
|
||||
* inside the representable range at the places samples get taken.
|
||||
* Question: what _is_ the maximum value possible. Twice that value? Root
|
||||
* two times that value? Hmmm. Think it depends on the frequency, too.
|
||||
*
|
||||
* The input array is assumed to have FFT_BUFFER_SIZE elements,
|
||||
* and the output array is assumed to have (FFT_BUFFER_SIZE / 2 + 1) elements.
|
||||
* state is a (non-NULL) pointer returned by fft_init.
|
||||
*/
|
||||
void fft_perform(const sound_sample *input, float *output, fft_state *state) {
|
||||
/* Convert data from sound format to be ready for FFT */
|
||||
fft_prepare(input, state->real, state->imag);
|
||||
|
||||
/* Do the actual FFT */
|
||||
fft_calculate(state->real, state->imag);
|
||||
|
||||
/* Convert the FFT output into intensities */
|
||||
fft_output(state->real, state->imag, output);
|
||||
}
|
||||
|
||||
/*
|
||||
* Free the state.
|
||||
*/
|
||||
void fft_close(fft_state *state) {
|
||||
if(state) free(state);
|
||||
}
|
||||
|
||||
/* ########################### */
|
||||
/* # Locally called routines # */
|
||||
/* ########################### */
|
||||
|
||||
/*
|
||||
* Prepare data to perform an FFT on
|
||||
*/
|
||||
static void fft_prepare(const sound_sample *input, float * re, float * im) {
|
||||
unsigned int i;
|
||||
float *realptr = re;
|
||||
float *imagptr = im;
|
||||
|
||||
/* Get input, in reverse bit order */
|
||||
for(i = 0; i < FFT_BUFFER_SIZE; i++) {
|
||||
*realptr++ = input[bitReverse[i]];
|
||||
*imagptr++ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Take result of an FFT and calculate the intensities of each frequency
|
||||
* Note: only produces half as many data points as the input had.
|
||||
* This is roughly a consequence of the Nyquist sampling theorm thingy.
|
||||
* (FIXME - make this comment better, and helpful.)
|
||||
*
|
||||
* The two divisions by 4 are also a consequence of this: the contributions
|
||||
* returned for each frequency are split into two parts, one at i in the
|
||||
* table, and the other at FFT_BUFFER_SIZE - i, except for i = 0 and
|
||||
* FFT_BUFFER_SIZE which would otherwise get float (and then 4* when squared)
|
||||
* the contributions.
|
||||
*/
|
||||
static void fft_output(const float * re, const float * im, float *output) {
|
||||
float *outputptr = output;
|
||||
const float *realptr = re;
|
||||
const float *imagptr = im;
|
||||
float *endptr = output + FFT_BUFFER_SIZE / 2;
|
||||
|
||||
#ifdef DEBUG
|
||||
unsigned int i, j;
|
||||
#endif
|
||||
|
||||
while(outputptr <= endptr) {
|
||||
*outputptr = (*realptr * *realptr) + (*imagptr * *imagptr);
|
||||
outputptr++; realptr++; imagptr++;
|
||||
}
|
||||
/* Do divisions to keep the constant and highest frequency terms in scale
|
||||
* with the other terms. */
|
||||
*output /= 4;
|
||||
*endptr /= 4;
|
||||
|
||||
#ifdef DEBUG
|
||||
printf("Recalculated input:\n");
|
||||
for(i = 0; i < FFT_BUFFER_SIZE; i++) {
|
||||
float val_real = 0;
|
||||
float val_imag = 0;
|
||||
for(j = 0; j < FFT_BUFFER_SIZE; j++) {
|
||||
float fact_real = cos(- 2 * j * i * PI / FFT_BUFFER_SIZE);
|
||||
float fact_imag = sin(- 2 * j * i * PI / FFT_BUFFER_SIZE);
|
||||
val_real += fact_real * re[j] - fact_imag * im[j];
|
||||
val_imag += fact_real * im[j] + fact_imag * re[j];
|
||||
}
|
||||
printf("%5d = %8f + i * %8f\n", i,
|
||||
val_real / FFT_BUFFER_SIZE,
|
||||
val_imag / FFT_BUFFER_SIZE);
|
||||
}
|
||||
printf("\n");
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* Actually perform the FFT
|
||||
*/
|
||||
static void fft_calculate(float * re, float * im) {
|
||||
unsigned int i, j, k;
|
||||
unsigned int exchanges;
|
||||
float fact_real, fact_imag;
|
||||
float tmp_real, tmp_imag;
|
||||
unsigned int factfact;
|
||||
|
||||
/* Set up some variables to reduce calculation in the loops */
|
||||
exchanges = 1;
|
||||
factfact = FFT_BUFFER_SIZE / 2;
|
||||
|
||||
/* Loop through the divide and conquer steps */
|
||||
for(i = FFT_BUFFER_SIZE_LOG; i != 0; i--) {
|
||||
/* In this step, we have 2 ^ (i - 1) exchange groups, each with
|
||||
* 2 ^ (FFT_BUFFER_SIZE_LOG - i) exchanges
|
||||
*/
|
||||
/* Loop through the exchanges in a group */
|
||||
for(j = 0; j != exchanges; j++) {
|
||||
/* Work out factor for this exchange
|
||||
* factor ^ (exchanges) = -1
|
||||
* So, real = cos(j * PI / exchanges),
|
||||
* imag = sin(j * PI / exchanges)
|
||||
*/
|
||||
fact_real = costable[j * factfact];
|
||||
fact_imag = sintable[j * factfact];
|
||||
|
||||
/* Loop through all the exchange groups */
|
||||
for(k = j; k < FFT_BUFFER_SIZE; k += exchanges << 1) {
|
||||
int k1 = k + exchanges;
|
||||
/* newval[k] := val[k] + factor * val[k1]
|
||||
* newval[k1] := val[k] - factor * val[k1]
|
||||
**/
|
||||
#ifdef DEBUG
|
||||
printf("%d %d %d\n", i,j,k);
|
||||
printf("Exchange %d with %d\n", k, k1);
|
||||
printf("Factor %9f + i * %8f\n", fact_real, fact_imag);
|
||||
#endif
|
||||
/* FIXME - potential scope for more optimization here? */
|
||||
tmp_real = fact_real * re[k1] - fact_imag * im[k1];
|
||||
tmp_imag = fact_real * im[k1] + fact_imag * re[k1];
|
||||
re[k1] = re[k] - tmp_real;
|
||||
im[k1] = im[k] - tmp_imag;
|
||||
re[k] += tmp_real;
|
||||
im[k] += tmp_imag;
|
||||
#ifdef DEBUG
|
||||
for(k1 = 0; k1 < FFT_BUFFER_SIZE; k1++) {
|
||||
printf("%5d = %8f + i * %8f\n", k1, real[k1], imag[k1]);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
exchanges <<= 1;
|
||||
factfact >>= 1;
|
||||
}
|
||||
}
|
||||
|
||||
static int reverseBits(unsigned int initial) {
|
||||
unsigned int reversed = 0, loop;
|
||||
for(loop = 0; loop < FFT_BUFFER_SIZE_LOG; loop++) {
|
||||
reversed <<= 1;
|
||||
reversed += (initial & 1);
|
||||
initial >>= 1;
|
||||
}
|
||||
return reversed;
|
||||
}
|
Reference in New Issue
Block a user