Files
recycled-ni-neutrino/src/driver/audiodec/fft.c
mrcolor bcecfb6585 our current experimental Neutrino branch
git-svn-id: file:///home/bas/coolstream_public_svn/THIRDPARTY/applications/neutrino-experimental@27 e54a6e83-5905-42d5-8d5c-058d10e6a962


Origin commit data
------------------
Branch: ni/coolstream
Commit: bc5bd4154e
Author: mrcolor <mrcolor@e54a6e83-5905-42d5-8d5c-058d10e6a962>
Date: 2009-12-08 (Tue, 08 Dec 2009)



------------------
This commit was generated by Migit
2009-12-08 11:05:11 +00:00

275 lines
8.3 KiB
C

/* fft.c: Iterative implementation of a FFT
* Copyright (C) 1999 Richard Boulton <richard@tartarus.org>
* Convolution stuff by Ralph Loader <suckfish@ihug.co.nz>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* TODO
* Remove compiling in of FFT_BUFFER_SIZE? (Might slow things down, but would
* be nice to be able to change size at runtime.)
* Finish making / checking thread-safety.
* More optimisations.
*/
#include "fft.h"
#include <stdlib.h>
#include <math.h>
#ifndef PI
#ifdef M_PI
#define PI M_PI
#else
#define PI 3.14159265358979323846 /* pi */
#endif
#endif
/* ########### */
/* # Structs # */
/* ########### */
struct _struct_fft_state {
/* Temporary data stores to perform FFT in. */
float real[FFT_BUFFER_SIZE];
float imag[FFT_BUFFER_SIZE];
};
/* ############################# */
/* # Local function prototypes # */
/* ############################# */
static void fft_prepare(const sound_sample *input, float * re, float * im);
static void fft_calculate(float * re, float * im);
static void fft_output(const float *re, const float *im, float *output);
static int reverseBits(unsigned int initial);
/* #################### */
/* # Global variables # */
/* #################### */
/* Table to speed up bit reverse copy */
static unsigned int bitReverse[FFT_BUFFER_SIZE];
/* The next two tables could be made to use less space in memory, since they
* overlap hugely, but hey. */
static float sintable[FFT_BUFFER_SIZE / 2];
static float costable[FFT_BUFFER_SIZE / 2];
/* ############################## */
/* # Externally called routines # */
/* ############################## */
/* --------- */
/* FFT stuff */
/* --------- */
/*
* Initialisation routine - sets up tables and space to work in.
* Returns a pointer to internal state, to be used when performing calls.
* On error, returns NULL.
* The pointer should be freed when it is finished with, by fft_close().
*/
fft_state *fft_init(void) {
fft_state *state;
unsigned int i;
state = (fft_state *) malloc (sizeof(fft_state));
if(!state) return NULL;
for(i = 0; i < FFT_BUFFER_SIZE; i++) {
bitReverse[i] = reverseBits(i);
}
for(i = 0; i < FFT_BUFFER_SIZE / 2; i++) {
float j = 2 * PI * i / FFT_BUFFER_SIZE;
costable[i] = cos(j);
sintable[i] = sin(j);
}
return state;
}
/*
* Do all the steps of the FFT, taking as input sound data (as described in
* sound.h) and returning the intensities of each frequency as floats in the
* range 0 to ((FFT_BUFFER_SIZE / 2) * 32768) ^ 2
*
* FIXME - the above range assumes no frequencies present have an amplitude
* larger than that of the sample variation. But this is false: we could have
* a wave such that its maximums are always between samples, and it's just
* inside the representable range at the places samples get taken.
* Question: what _is_ the maximum value possible. Twice that value? Root
* two times that value? Hmmm. Think it depends on the frequency, too.
*
* The input array is assumed to have FFT_BUFFER_SIZE elements,
* and the output array is assumed to have (FFT_BUFFER_SIZE / 2 + 1) elements.
* state is a (non-NULL) pointer returned by fft_init.
*/
void fft_perform(const sound_sample *input, float *output, fft_state *state) {
/* Convert data from sound format to be ready for FFT */
fft_prepare(input, state->real, state->imag);
/* Do the actual FFT */
fft_calculate(state->real, state->imag);
/* Convert the FFT output into intensities */
fft_output(state->real, state->imag, output);
}
/*
* Free the state.
*/
void fft_close(fft_state *state) {
if(state) free(state);
}
/* ########################### */
/* # Locally called routines # */
/* ########################### */
/*
* Prepare data to perform an FFT on
*/
static void fft_prepare(const sound_sample *input, float * re, float * im) {
unsigned int i;
float *realptr = re;
float *imagptr = im;
/* Get input, in reverse bit order */
for(i = 0; i < FFT_BUFFER_SIZE; i++) {
*realptr++ = input[bitReverse[i]];
*imagptr++ = 0;
}
}
/*
* Take result of an FFT and calculate the intensities of each frequency
* Note: only produces half as many data points as the input had.
* This is roughly a consequence of the Nyquist sampling theorm thingy.
* (FIXME - make this comment better, and helpful.)
*
* The two divisions by 4 are also a consequence of this: the contributions
* returned for each frequency are split into two parts, one at i in the
* table, and the other at FFT_BUFFER_SIZE - i, except for i = 0 and
* FFT_BUFFER_SIZE which would otherwise get float (and then 4* when squared)
* the contributions.
*/
static void fft_output(const float * re, const float * im, float *output) {
float *outputptr = output;
const float *realptr = re;
const float *imagptr = im;
float *endptr = output + FFT_BUFFER_SIZE / 2;
#ifdef DEBUG
unsigned int i, j;
#endif
while(outputptr <= endptr) {
*outputptr = (*realptr * *realptr) + (*imagptr * *imagptr);
outputptr++; realptr++; imagptr++;
}
/* Do divisions to keep the constant and highest frequency terms in scale
* with the other terms. */
*output /= 4;
*endptr /= 4;
#ifdef DEBUG
printf("Recalculated input:\n");
for(i = 0; i < FFT_BUFFER_SIZE; i++) {
float val_real = 0;
float val_imag = 0;
for(j = 0; j < FFT_BUFFER_SIZE; j++) {
float fact_real = cos(- 2 * j * i * PI / FFT_BUFFER_SIZE);
float fact_imag = sin(- 2 * j * i * PI / FFT_BUFFER_SIZE);
val_real += fact_real * re[j] - fact_imag * im[j];
val_imag += fact_real * im[j] + fact_imag * re[j];
}
printf("%5d = %8f + i * %8f\n", i,
val_real / FFT_BUFFER_SIZE,
val_imag / FFT_BUFFER_SIZE);
}
printf("\n");
#endif
}
/*
* Actually perform the FFT
*/
static void fft_calculate(float * re, float * im) {
unsigned int i, j, k;
unsigned int exchanges;
float fact_real, fact_imag;
float tmp_real, tmp_imag;
unsigned int factfact;
/* Set up some variables to reduce calculation in the loops */
exchanges = 1;
factfact = FFT_BUFFER_SIZE / 2;
/* Loop through the divide and conquer steps */
for(i = FFT_BUFFER_SIZE_LOG; i != 0; i--) {
/* In this step, we have 2 ^ (i - 1) exchange groups, each with
* 2 ^ (FFT_BUFFER_SIZE_LOG - i) exchanges
*/
/* Loop through the exchanges in a group */
for(j = 0; j != exchanges; j++) {
/* Work out factor for this exchange
* factor ^ (exchanges) = -1
* So, real = cos(j * PI / exchanges),
* imag = sin(j * PI / exchanges)
*/
fact_real = costable[j * factfact];
fact_imag = sintable[j * factfact];
/* Loop through all the exchange groups */
for(k = j; k < FFT_BUFFER_SIZE; k += exchanges << 1) {
int k1 = k + exchanges;
/* newval[k] := val[k] + factor * val[k1]
* newval[k1] := val[k] - factor * val[k1]
**/
#ifdef DEBUG
printf("%d %d %d\n", i,j,k);
printf("Exchange %d with %d\n", k, k1);
printf("Factor %9f + i * %8f\n", fact_real, fact_imag);
#endif
/* FIXME - potential scope for more optimization here? */
tmp_real = fact_real * re[k1] - fact_imag * im[k1];
tmp_imag = fact_real * im[k1] + fact_imag * re[k1];
re[k1] = re[k] - tmp_real;
im[k1] = im[k] - tmp_imag;
re[k] += tmp_real;
im[k] += tmp_imag;
#ifdef DEBUG
for(k1 = 0; k1 < FFT_BUFFER_SIZE; k1++) {
printf("%5d = %8f + i * %8f\n", k1, real[k1], imag[k1]);
}
#endif
}
}
exchanges <<= 1;
factfact >>= 1;
}
}
static int reverseBits(unsigned int initial) {
unsigned int reversed = 0, loop;
for(loop = 0; loop < FFT_BUFFER_SIZE_LOG; loop++) {
reversed <<= 1;
reversed += (initial & 1);
initial >>= 1;
}
return reversed;
}